Skip to main content

Power Flow in Synchronous Motor

Net input to the synchronous motor is the three phase input to the stator.
...                      Pin = √3 VL IL cosΦ W 
       where         VL = Applied Line Voltage
                          IL = Line current drawn by the motor
                          cosΦ = operating p.f. of synchronous motor
       or                Pin  = 3 ([er phase power)
                                 = 3 x Vph Iaph cosΦ W
       Now in stator, due to its resistance Ra per phase there are stator copper losses.
       Total stator copper losses = 3 x (Iaph)2 x Ra W
...     The remaining power is converted to the mechanical power, called gross mechanical power developed by the motor denoted as Pm.
...                Pm = Pin - Stator copper losses
       Now    P = T x ω
...                P= Tx (2πNs/60)  as speed is always Ns
       This is the gross mechanical torque developed. In d.c. motor, electrical equivalent of gross mechanical power developed is Eb x Ia, similar in synchronous motor the electrical equivalent of gross mechanical power developed is given by,
                           Pm = 3 Ebph x Iaph x cos (Ebph ^ Iaph)
i) For lagging p.f.,
            Ebph ^ Iaph = Φ - δ
ii) For leading p.f.,
             Ebph ^ Iaph = Φ + δ
iii) For unity p.f.,
              Ebph ^ Iaph  = δ
Note : While calculating angle between Ebph and Iaph from phasor diagram, it is necessary to reverse Ebph phasor. After reversing Ebph, as it is in opposition to Vph, angle between Ebph and Iaph must be determined.
       In general,
       Positive sign for leading p.f.
       Neglecting sign for lagging p.f.
       Net output of the motor then can be obtained by subtracting friction and windage i.e. mechanical losses from gross mechanical power developed.
...                      Pout = Pm - mechanical losses.
       where         Tshaft = Shaft torque available to load.
                          Pout = Power available to load
...     Overall efficiency = Pout/Pin

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for a...

Armature Voltage Control Method or Rheostatic Control of dc motor

Speed Control of D.C. Shunt Motor (Part2)  2. Armature Voltage Control Method or Rheostatic Control        The speed is directly proportional to the voltage applied across the armature. As the supply voltage is normally constant, the voltage across the armature can be controlled by adding a variable resistance in series with the armature as shown in the Fig. 1. Fig. 1 Rheostat control of shunt motor        The field winding is excited by the normal voltage hence I sh is rated and constant in this method. Initially the reheostat position is minimum and rated voltage gets applied across the armature. So speed is also rated. For a given load, armature current is fixed. So when extra resistance is added in the armature circuit, I a remains same and there is voltage drop across the resistance added ( I a R). Hence voltage across the armature decreases, decreasing the speed below normal value. By varyi...