Skip to main content

OPEN CIRCUIT TEST OR NO-LOAD TEST

images
Figure 1.35 Open Circuit Test


From this test, we can determine core loss and no-load current (I0) of the transformer. Figure 1.35 shows the schematic diagram of the transformer. The high-voltage side is generally kept open because the current in high-voltage winding is less compared to that on low-voltage winding. In low-voltage side, a voltmeter, an ammeter and a wattmeter are connected to measure the input voltage, no-load current and the core loss of the transformer. Since no-load current is generally small, the copper loss at no-load condition is negligible. The wattmeter reading practically gives the iron loss of the transformer.
To measure the induced emf in secondary winding, a high-resistance voltmeter is connected across the secondary to calculate the turns ratio (a).
Let I0 be the reading of the ammeter, V1 be the reading of the voltmeter and W be the reading of the wattmeter.
We have W=V1I0cosθ0
i.e., images
Therefore, IW=I0cosθ0 (1.27)
and Iμ=I0sinθ0 (1.28)
During no-load condition, the voltage drop across the primary impedance is small. Therefore, we have
images
andimages
The total iron loss depends on the frequency as well as the maximum flux density. Hysteresis loss and eddy current loss are the two parts of the total iron loss, which are described below.
  1. Hysteresis loss: Ph = k1Bmax1,6f (1.31)
  2. Eddy current loss: Pe = k2Bmax2f2 (1.32)
where k1 and k2 are the constants in the above two equations, which can be obtained from the experi-ment. The hysteresis and eddy current losses can be calculated by knowing k1 and k2. Figure 1.36 shows the variation of iron loss with the applied voltage.
images
Figure 1.36 Variation of Iron Loss with Applied Voltage

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Armature Voltage Control Method or Rheostatic Control of dc motor

Speed Control of D.C. Shunt Motor (Part2)  2. Armature Voltage Control Method or Rheostatic Control        The speed is directly proportional to the voltage applied across the armature. As the supply voltage is normally constant, the voltage across the armature can be controlled by adding a variable resistance in series with the armature as shown in the Fig. 1. Fig. 1 Rheostat control of shunt motor        The field winding is excited by the normal voltage hence I sh is rated and constant in this method. Initially the reheostat position is minimum and rated voltage gets applied across the armature. So speed is also rated. For a given load, armature current is fixed. So when extra resistance is added in the armature circuit, I a remains same and there is voltage drop across the resistance added ( I a R). Hence voltage across the armature decreases, decreasing the speed below normal value. By varyi...

Demagnetising and Cross Magnetizing Conductors

The conductors which are responsible for producing demagnetizing and distortion effects are shown in the Fig.1. Fig. 1        The brushes are lying along the new position of MNA which is at angle θ  from GNA. The conductors in the region AOC = BOD = 2θ  at the top and bottom of the armature are carrying current in such a direction as to send the flux in armature from right to left. Thus these conductors are in direct opposition to main field and called demagnetizing armature conductors.         The remaining armature conductors which are lying in the region AOD and BOC carry current in such a direction as to send the flux pointing vertically downwards i.e. at right angles to the main field flux. Hence these conductors are called cross magnetizing armature conductors which will cause distortion in main field flux.        These conductors are shown in the Fig. 2 Fig. 2  ...