Skip to main content

Squirrel Cage Rotor three phase induction motor

The rotor core is cylindrical and slotted on its periphery. The rotor consists of uninsulated copper or aluminium bars called rotor conductors. The bars are placed in the slots. These bars are permanently shorted at each end with the help of conducting copper ring called end ring. The bars are usually brazed to the end rings to provide good mechanical strength. The entire structure looks like a cage, forming a closed electrical circuit. So the rotor is called squirrel cage rotor. The construction is shown in the Fig. 1.

Fig.  1 Squirrel cage rotor

        As the bars are permanently shorted to each other through end ring, the entire rotor resistance is very very small. Hence this rotor is also called short circuited rotor. As rotor itself is short circuited, no external resistance can have any effect on the rotor resistance. Hence no external resistance can be introduced in the rotor circuit. So slip ring and brush assembly is not required for this rotor. Hence the construction of this rotor is very simple.
      Fan blades are generally provided at the ends of the rotor core. This circulates the air through the machine while operation, providing the necessary cooling. The air gap between stator and rotor is kept uniform and as small as possible.
       In this type of rotor, the slots are not arranged parallel to the shaft axis but are skewed as shown in the Fig. 2.
Fig. 2  Skewing in rotor construction

The advantages of skewing are,
  1. A magnetic hum i.e. noise gets reduced due to skewing hence skewing makes the motor operation quiter.
  2. It makes the rotor operation smooth.
  3. The stator and rotor teeth may get magnetically locked. Such a tendency of magnetic locking gets reduced due to skewing.
  4. It increases the effective transformation ratio between stator and rotor.

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Dividing the two proportionality equations,               E 2r /E 2 = ( N s - N)/N s    but (N s - N)/N = slip s               E 2r /E 2 = s               E 2r = s E 2        The magnitude of the induced e.m.f in the rotor also reduces by slip times the