Skip to main content

ALL-DAY EFFICIENCY

The ratio of output in watts to input in watts is called commercial efficiency of a transformer. Distribution transformers are used for supplying lighting and general networks. Distribution transformers are energized throughout the day. Their secondaries are at no load most of the time in a day except during the hours of lighting period. Core loss occurs throughout the day. Copper loss occurs only when they are loaded and hence is less important. To judge their performance, all-day efficiency or operational efficiency is calculated. The all-day efficiency is defined by
images
The all-day efficiency is less than the commercial efficiency of a transformer.
Example 1.16 A 200 kVA single-phase transformer is in circuit throughout 24 hours. For 8 hours in a day, the load is 150 kW at 0.8 power factor lagging and for 7 hours, the load is 90 kW at 0.9 power factor. Remaining time or the rest period, it is at no-load condition. Full-load Cu loss is 4 kW and the iron loss is 1.8 kW. Calculate the all-day efficiency of the transformer.
Solution
Full-load output = 200 kVA, Full-load Cu loss = 4 kW, Iron loss = 1.8 kW.
images


Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Dividing the two proportionality equations,               E 2r /E 2 = ( N s - N)/N s    but (N s - N)/N = slip s               E 2r /E 2 = s               E 2r = s E 2        The magnitude of the induced e.m.f in the rotor also reduces by slip times the