The ratio of output in watts to input in watts is called commercial efficiency of a transformer. Distribution transformers are used for supplying lighting and general networks. Distribution transformers are energized throughout the day. Their secondaries are at no load most of the time in a day except during the hours of lighting period. Core loss occurs throughout the day. Copper loss occurs only when they are loaded and hence is less important. To judge their performance, all-day efficiency or operational efficiency is calculated. The all-day efficiency is defined by
The all-day efficiency is less than the commercial efficiency of a transformer.
Example 1.16 A 200 kVA single-phase transformer is in circuit throughout 24 hours. For 8 hours in a day, the load is 150 kW at 0.8 power factor lagging and for 7 hours, the load is 90 kW at 0.9 power factor. Remaining time or the rest period, it is at no-load condition. Full-load Cu loss is 4 kW and the iron loss is 1.8 kW. Calculate the all-day efficiency of the transformer.
Solution
Full-load output = 200 kVA, Full-load Cu loss = 4 kW, Iron loss = 1.8 kW.
Comments
Post a Comment
Comment Policy
We’re eager to see your comment. However, Please Keep in mind that all comments are moderated manually by our human reviewers according to our comment policy, and all the links are nofollow. Using Keywords in the name field area is forbidden. Let’s enjoy a personal and evocative conversation.