Skip to main content

TOTAL APPROXIMATE VOLTAGE DROP OF A TRANSFORMER

During no-load condition, induced voltages at the primary and secondary windings are equal to the applied voltage and secondary terminal voltage respectively. If 0V2 be the secondary terminal voltage at no load, we can write E2 = 0V2. Let V2 be the secondary voltage on load. Figure 1.40 shows the phasor diagram of a transformer referred to as secondary.
In Figure 1.40, R02 and X02 are the equivalent resistance and reactance of the transformer, respec-tively, referred to as secondary side. With O as centre, an arc is drawn in Figure 1.40, which intersects the extended OA at H. From C, a perpendicular is drawn on OH, which intersects it at G. Now AC = AH represents the actual drop and AG represents the approximate voltage drop. BF is drawn perpendicular to OH. BE is drawn parallel to AG, which is equal to FG.
The approximate voltage drop
= AG = AF+ FG = AF+ BE
= I2R02cosθ+I2X02sinθ (1.39)
images
Figure 1.40 Phasor Diagram of a Transformer Referred to as Secondary
This approximate voltage drop shown in Equation (1.39) is for lagging power factor only.
For leading power factor, the approximate voltage drop will be
= I2R02cosθI2X02sinθ (1.40)
where ‘+’ sign is for lagging power factor and ‘-’ sign is for leading power factor.
The above calculation is referred to as secondary. It may be noted that voltage drop referred to as primary is
I1R01cosθ±I1X01sinθ (1.41)
∴% voltage drop in secondary is=images
images
=vrcosθ±vxsinθ (1.42)
where images
and images

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for a...

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Di...