Skip to main content

SUMPNER’S TEST

To determine the rise of maximum temperature of a transformer, its load test is of utmost importance. Using suitable load impedance, small transformers can be put on full load. The full-load test of large transformers is not possible because considerable wastage of energy occurs and it is difficult to get a suitable load for absorbing full-load power. Sumpner’s test is used to put large transformer on full load. This test can also be used to determine the efficiency of a transformer. Figure 1.45 shows the schematic diagram of Sumpner’s test. This test is also known as back to back test or load test.
This test requires two identical transformers. The two primaries are connected in parallel and are energized at rated voltage and rated frequency. The wattmeter W1 records the reading of core loss of both the transformers. Next the two secondaries are connected in series in such a way that their polarities are in phase opposition and the reading of the voltmeter V2 becomes zero. With the help of voltage regulator fed from source, a voltage is injected to the secondary of the transformers, which is adjusted until the rated secondary current flows. The voltmeter reads a voltage, which is the leakage impedance drop of the two transformers. The reading of W1 remains unaltered. The wattmeter W2 reads the total copper (Cu) loss of the two transformers. Although the transformers are not supplying any load current, this test measures the full iron loss as well as copper loss of the transformers. The net input during this test is W1 + W2. To measure the temperature rise, the two transformers are kept under rated loss conditions for several hours.
images
Figure 1.45 Sumpner’s Test

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Armature Voltage Control Method or Rheostatic Control of dc motor

Speed Control of D.C. Shunt Motor (Part2)  2. Armature Voltage Control Method or Rheostatic Control        The speed is directly proportional to the voltage applied across the armature. As the supply voltage is normally constant, the voltage across the armature can be controlled by adding a variable resistance in series with the armature as shown in the Fig. 1. Fig. 1 Rheostat control of shunt motor        The field winding is excited by the normal voltage hence I sh is rated and constant in this method. Initially the reheostat position is minimum and rated voltage gets applied across the armature. So speed is also rated. For a given load, armature current is fixed. So when extra resistance is added in the armature circuit, I a remains same and there is voltage drop across the resistance added ( I a R). Hence voltage across the armature decreases, decreasing the speed below normal value. By varyi...

Demagnetising and Cross Magnetizing Conductors

The conductors which are responsible for producing demagnetizing and distortion effects are shown in the Fig.1. Fig. 1        The brushes are lying along the new position of MNA which is at angle θ  from GNA. The conductors in the region AOC = BOD = 2θ  at the top and bottom of the armature are carrying current in such a direction as to send the flux in armature from right to left. Thus these conductors are in direct opposition to main field and called demagnetizing armature conductors.         The remaining armature conductors which are lying in the region AOD and BOC carry current in such a direction as to send the flux pointing vertically downwards i.e. at right angles to the main field flux. Hence these conductors are called cross magnetizing armature conductors which will cause distortion in main field flux.        These conductors are shown in the Fig. 2 Fig. 2  ...