Skip to main content

GENERATION OF INDUCED EMF AND CURRENT

Figure 9 shows an insulated coil whose terminals are connected to a sensitive galvanometer (G). There is a bar magnet, AB, close to the coil. When the bar magnet is suddenly moved towards the coil to position A ‘B’, there is a deflection in the galvanometer. This deflection in the galvanometer lasts so long as there are relative motions of the magnet with respect to the coil; that is, the flux linking with the coil changes.
Figure 10 shows that when the magnet is withdrawn, the deflection of the galvanometer is in the direction opposite to the above case. This deflection exists so long as the bar magnet is in relative motion to the coil; that is, the flux linking with the coil changes.
images
Figure 9 Generation of Induced emf
images
Figure 10 Magnet Withdrawn
In both the cases, the deflection is reduced to zero when the bar magnet becomes stationary. The flux linked with the coil increases as the bar magnet approaches the coil in the first case, while in the second case, the flux linked with the coil decreases when the bar magnet is withdrawn.
It is clear from above that deflections in the two cases are in different directions. The deflection in the galvanometer indicates that there is an induced current produced in the coil. In the first case, the induced current flows through the coil in an anticlockwise direction as seen from the bar magnet. This indicates that the face of the coil is the N pole. To move the bar magnet towards the coil, a force from outside must be given to the bar magnet. When the magnet is withdrawn, the current flows in a clockwise direction, as seen from the bar magnet. This indicates that the face of the coil is the S pole. So once again force must be supplied to the bar magnet from outside to take it away from the coil. Here, the principle of conservation of energy is fully satisfied.
From the above results, Faraday proposed two laws known as Faraday’s first and second laws.

FARADAY’S LAWS

  • First law: Whenever there is variation of magnetic flux linked with a coil, an emf is induced in it. Or an emf is induced in a conductor whenever it cuts the magnetic flux.
  • Second law: The magnitude of this induced emf is the rate of change of flux linkage.
 Let the initial flux be Φ1 and the final flux be Φ2 in time t. Let the turns of the coil be N. Therefore, the initial flux linkage is 1 and the final flux linkage is 2.
images
In differential form, we can put Equation (1) as images

LENZ’S LAW

The law states that the induced current will flow in such a direction that it will oppose the cause that produces it. It is explained as follows:
The current through the coil 1 is varied by the rheostat, as shown in Figure 11. An emf is induced in coil 2 due to variation of flux in coil 1. The induced emf between P and Q will be such that the current will flow from P to Q via the resistance R so that it will oppose the flux that is linked with it. In this case P will have a positive polarity and Q will have a negative polarity. The induced emf is given by images.
images
Figure 11 Example of Lenz’s Law

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Dividing the two proportionality equations,               E 2r /E 2 = ( N s - N)/N s    but (N s - N)/N = slip s               E 2r /E 2 = s               E 2r = s E 2        The magnitude of the induced e.m.f in the rotor also reduces by slip times the