Skip to main content

BUCHHOLZ RELAY

images                      Figure 1.19 shows Buchholz relay having two elements mounted in a small chamber. It is located in the pipe connection between the conservator and the transformer tank. Heat is produced due to leakage current for any minor fault and some of the oil in the transformer tank evaporates. Some vapour comes to the top of the chamber while passing through to the conservator. The oil level falls due to accumulation of vapour, and the mercury tape attached to the float is tilted closing the alarm circuit to ring the bell. A release cock is attached to the top of the chamber to release the pressure of the chamber after operation and gas is emitted. It allows refilling of oil in the chamber once again. During severe fault, a large volume of gas is evolved, which tilts the lower element containing a mercury switch mounted on a hinged-type flap and the trip coil is energized. A test cock is provided at the bottom of the chamber, which allows air to be pumped into the chamber for test purposes.

Comments

Post a Comment

Comment Policy
We’re eager to see your comment. However, Please Keep in mind that all comments are moderated manually by our human reviewers according to our comment policy, and all the links are nofollow. Using Keywords in the name field area is forbidden. Let’s enjoy a personal and evocative conversation.

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Electrical Engineering interview questions and answers Part 17

Why star delta starter is preferred with induction motor? Star delta starter is preferred with induction motor due to following reasons: • Starting current is reduced 3-4 times of the direct current due to which voltage drops and hence it causes less losses. • Star delta starter circuit comes in circuit first during starting of motor, which reduces voltage 3 times, that is why current also reduces up to 3 times and hence less motor burning is caused. • In addition, starting torque is increased and it prevents the damage of motor winding. State the difference between generator and alternator Generator and alternator are two devices, which converts mechanical energy into electrical energy. Both have the same principle of electromagnetic induction, the only difference is that their construction. Generator persists stationary magnetic field and rotating conductor