Skip to main content

Working Of Transformer

Nowadays, electrical power is generated for industrial and utility purposes by thermal power stations and large hydroelectric plants in the three-phase form at a frequency of 50 Hz (in India). The generated frequency in some other countries is 60 Hz. The generated voltage at the generating station is 6.6 kV, 11 kV or higher. For transmission purposes, it is required to step it up to a voltage of 132 kV or higher. Again, in urban and rural areas it is required to step it down to 3.3 kV and 6.6 kV, respectively, and 11 kV at the substation. For domestic purposes, it is required to step it down to 400 V or 230 V Three-phase transformers are used to step up the generated voltage before transmission of electrical power and also to step down the high voltage before distribution, that is, at the substation. Before the study of three-phase transformers, knowledge of single-phase transformers is essential. The aim of this chapter is to discuss single-phase transformers only.

1.1 DEFINITION

A transformer is a static or stationary electromagnetic device, consisting of two coils, by means of which electrical power in one circuit is transformed into electrical power of the same frequency in another circuit.

1.2 BASIC PRINCIPLE

Figure 1.1 shows a basic single-phase transformer having two windings wound on a common magnetic core. From the principle of mutual induction, when two coils are inductively coupled and the current in one coil is changed uniformly, an emf (electromagnetic force) is induced in the other coil. If a closed path is provided at the secondary circuit, this induced emf at the secondary drives a current. As shown in Figure 1.1, the transformer has two coils, which are electrically separated and magnetically linked through a common magnetic path. The basic principle of the transformer is the same as the principle of mutual induction. The coils of the transformer have high mutual inductance.
images
Figure 1.1 Transformer
In brief, we can say the following:
  • The transformer is a static device.
  • It transfers electrical power from one circuit to another.
  • During transfer of power, there is no change of frequency.
  • It uses electromagnetic induction to transfer electrical power.
  • The two electrical circuits are in mutual inductive influence of each other.

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Dividing the two proportionality equations,               E 2r /E 2 = ( N s - N)/N s    but (N s - N)/N = slip s               E 2r /E 2 = s               E 2r = s E 2        The magnitude of the induced e.m.f in the rotor also reduces by slip times the