Skip to main content

E.M.F. Equation of D.C. Generator

  Let       P = Number of poles of the generator
                   Φ = Flux produced by each pole in webers (Wb)
                   N = Speed of armature in r.p.m.
                   Z = Total Number of Armature Conductors
                   A = Number of parallel paths in which the 'Z' number of conductors are divided
       So        A = P for lap type of winding
                   A = 2 for wave type of winding
       Now e.m.f. gets induced in the conductor according to Faraday's law of electromagnetic induction. Hence average value of e.m.f. induced in each armature conductor is,
       e = Rate of cutting the flux = dΦ/dt
       Now consider one revolution of conductor. In one revolution, conductor will cut total flux produced by all the poles i.e. Φ x P. While time required to complete one revolution is 60/N seconds as speed is N r.p.m.
       This is the e.m.f. induced in one conductor. Now the conductors in one parallel path are always in series. There are total Z conductor with A parallel paths, hence Z/A number of conductors are always in series and e.m.f. remains same across all the parallel paths.
...     Total e.m.f. can be expressed as,

       This is nothing but the e.m.f. equation of a d.c. generator.
Example : A 4 pole, lap wound, d.c. generator has a useful flux of 0.07 Wb per pole. Calculate the generated e.m.f. when it is rotated at a speed of 900 r.p.m. with the help of prime mover. Armature consists of 440 number of conductors. Also calculate the generated e.m.f. if lap wound armature is replaced by wave wound armature.
Solution :
P = 4    Z = 440   Φ = 0.07 Wb    and   N = 900 r.p.m.
i) For lap wound,      A = P = 4
ii) For wave wound    A = 2

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for a...

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Di...