Skip to main content

Critical Field Resistance in D.C. Shunt Generator

Consider the field magnetization characteristics of a d.c. shunt generator shown in the Fig. 1.

Fig. 1 Concept of critical resistance

       The Fig. 1 shows that generator voltage builds in step till point A. This point is intersection of field resistance line with the open circuit characteristics (O.C.C.). The voltage corresponding to point A is the maximum voltage it can generate. If the slope of field resistance line is reduced by decreasing the field resistance, the maximum voltage generator can build will be higher than that corresponding to point A. Similarly if the slope of field resistance line is increased by increasing the field resistance, the maximum voltage generator can build will be less that that corresponding to point A i.e. corresponding to point B.
       If now the slope of the field resistance line is increased in such a way that it becomes tangential to the lower part of the open circuit characteristics. The voltage corresponding to this point is EC. This voltage is just sufficient to drive the current through field resistance so that cumulative process of building the voltage starts. This value of field resistance is called critical resistance denoted as RC, of the shunt field circuit at given speed.
Note : If field circuit resistance is more than RC at start then induced e.m.f. fail to drive current through field circuit and generator fails to excite at given speed.
       The critical resistance is the slope of the critical resistance line.

       Similar to the critical resistance there is a concept of critical speed. We know that E α N. As speed decreases the induced e.m.f. decreases and we get O.C.C. below the O.C.C. at normal speed. If we go on reducing the speed, at a particular speed we will get O.C.C. just tangential to normal field resistance line.
Note : This speed at which the machine just excites for the given field circuit resistance is called the critical speed of a shunt generator denoted as NC.
1.1 Practical Determination of RC
       Generally data for plotting the open circuit characteristics is given. Plot the characteristics on the graph paper to the scale.
       Draw the tangent, to the initial part of this O.C.C. then the slope of this line is the critical resistance for the speed at which the data is given.
Note : If speed changes, then the O.C.C. changes hence the value of  RC changes.
       Now if RC is asked at speed N2, while data for O.C.C. is given at N1. It is known that,

Note : Generate the data for O.C.C. at new speed and repeat the procedure to obtain RC.

1.2 Critical Speed
       It is known that as speed changes, the open circuit characteristics also changes, similarly for different shunt field resistances, the corresponding lines are also different. 
Note : The speed for which the given field resistance acts as critical resistance is called the critical speed, denoted as NC.
       Thus if the line is drawn representing given Rsh then O.C.C. drawn for such a speed to which this line is tangential to the initial portion, is nothing but the critical speed NC.
       Graphically critical speed can be obtained for given Rsh. The steps are,
1. Drawn O.C.C. for given speed N1.
2. Draw a line tangential to this O.C.C. say OA.
3. Draw a line representing the given Rsh say OP.
4. Select any field current say point R.
5. Draw vertical line from R to intersect OA at S and OP at T.
6. Then the critical speed NC is,
Fig. 2  Determine critical speed
 

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for a...

Armature Voltage Control Method or Rheostatic Control of dc motor

Speed Control of D.C. Shunt Motor (Part2)  2. Armature Voltage Control Method or Rheostatic Control        The speed is directly proportional to the voltage applied across the armature. As the supply voltage is normally constant, the voltage across the armature can be controlled by adding a variable resistance in series with the armature as shown in the Fig. 1. Fig. 1 Rheostat control of shunt motor        The field winding is excited by the normal voltage hence I sh is rated and constant in this method. Initially the reheostat position is minimum and rated voltage gets applied across the armature. So speed is also rated. For a given load, armature current is fixed. So when extra resistance is added in the armature circuit, I a remains same and there is voltage drop across the resistance added ( I a R). Hence voltage across the armature decreases, decreasing the speed below normal value. By varyi...