Skip to main content

Electrical Interview Questions Part 9

Q:What are the operation carried out in Thermal power station?
A: The water is obtained in the boiler and the coal is burnt so that steam is obtained this steam is allowed to hit the turbine, the turbine which is coupled with the generator generates the electricity

Q: What is the diff. btwn. Electronic regulator and ordinary rheostat regulator for fans?
A: The difference between the electronic and ordinary regulator is the fact that in electronic reg. power losses tend to be less because as we minimize the speed the electronic reg. give the power necessary for that particular speed but in case of ordinary rheostat type reg. the power wastage is same for every speed and no power is saved. In electronic regulator triac is employed for speed control. by varying the firing angle speed is controlled but in rheostatic control resistance is decreased by steps to achievespeed control.

Q: What is 2 phase motor?
A: A two phase motor is often a motor with the the starting winding and the running winding have a phase split. e. g; ac servo motor. where the auxiliary winding and the control winding have a phase split of 90 degree.

Q:What does quality factor depend on in resonance?
A:Quality factor q depends on frequency and bandwidth.

Q:What are the types of power in electrical power?
A: There are normally three types of power are counted in electrical power. They are,
· Apparent power
· Active power
· Reactive power

Q:What are the advantages of VSCF wind electrical system?
A:Advantages of VSCF wind electrical system are:
• No complex pitch changing mechanism is needed.
• Aero turbine always keeps going at maximum efficiency point.
• Extra energy in the high wind speed region of the speed - duration curve can be extracted
• Significant reduction in aerodynamic stresses, which are associated with constant - speed operation.

Q:What is slip in an induction motor?
A:Slip can be defined as the distinction between the flux speed (Ns) and the rotor speed (N). Speed of the rotor of an induction motor is always less than its synchronous speed. It is usually expressed as a percentage of synchronous speed (Ns) and represented by the symbol ‘S’.

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Dividing the two proportionality equations,               E 2r /E 2 = ( N s - N)/N s    but (N s - N)/N = slip s               E 2r /E 2 = s               E 2r = s E 2        The magnitude of the induced e.m.f in the rotor also reduces by slip times the