Skip to main content

Characteristics of D.C. Compound Motor

Compound motor characteristics basically depends on the fact whether the motor is cumulatively compound or differential compound. All the characteristics of the compound motor are the combination of the shunt and series characteristic.
       Cumulative compound motor is capable of developing large amount of torque at low speeds just like series motor. However it is not having a disadvantages of series motor even at light or no load. The shunt field winding produces the definite flux and series flux helps the shunt field flux to increase the total flux level.
       So cumulative compound motor can run at reasonable speed and will not run with dangerously high speed like series motor, on light or no load condition.
       In differential compound motor, as two fluxes oppose each other, the resultant flux decreases as load increases, thus the machine runs at a higher speed with increase in the load. This property is dangerous as on full load, the motor may try to run with dangerously high speed. So differential compound motor is generally not used in practice. 
       The various characteristics of both the types of compound motors cumulative and the differential are shown in the Fig. 1(a), (b) and (c).
Fig. 1 characteristics of d.c. compound motor
       The exact shape of these characteristics depends on the relative contribution of series and shunt field windings. If the shunt field winding is more dominant then the characteristics take the shape of the shunt motor characteristics. While if the series field winding is more dominant then the characteristics take the shape of the series characteristics.

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for a...

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Di...