Skip to main content

Working Principle of 1-phase Induction Motor

For the motoring action, there must exist two fluxes which interact with each other to produce the torque. In d.c. motors, field winding produces the main flux while d.c. supply given to armature is responsible to produce armature flux. The main flux and armature flux interact to produce the torque.
       In the single phase induction motor, single phase a.c. supply is given to the stator winding. The stator winding carries an alternating current which produces the flux which is also alternating in nature. This flux is called main flux. This flux links with the rotor conductors and due to transformer action e.m.f. gets induced in the rotor. The induced e.m.f. drives current through the rotor as rotor circuit is closed circuit. This rotor current produces another flux called rotor flux required for the motoring action. Thus second flux is produced according to induction principle due to induced e.m.f. hence the motor is called induction motor. As against this in d.c. motor a separate supply is required to armature to produce armature flux. This is an important difference between d.c. motor and an induction motor.
      Another important difference between the two is that the d.c. motors are self starting while single phase induction motors are not self starting.
       Let us see why single phase induction motors are not self starting with the help of  a theory called double revolving field theory.

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A...

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for a...

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Di...