Skip to main content

Cross Field theory

Consider a single phase induction motor with standstill rotor as shown in the Fig. 1. The stator winding is excited by the single phase a.c. supply. This supply produces an alternating flux Φs which acts along the axis of the stator winding. Due to this flux, e.m.f., gets induced in the rotor conductors due to transformer action. As rotor is closed one, this e.m.f. circulates current through the rotor conductors. The direction of the rotor current is as shown in the Fig. 1. The direction of rotor current is so as to oppose the cause producing it, which is stator flux Φs.


Fig.  1
       Now Fleming's left hand rule can be used to find the direction of the force experienced by the rotor conductors. It can be seen that when Φs acts in upward direction and increasing positively, the conductors on left experience force from left to right while conductors on right experience force from right to left. Thus overall, the force experienced by the rotor is zero. Hence no torque exists on the rotor and rotor can not start rotating.
       We have seen that there must exist two fluxes separated by some angle so as to produce rotating magnetic field. According to cross field theory, the stator flux can be resolved into two components which are mutually perpendicular. One acts along axis of the stator winding and other acts perpendicular to it.
       Assume now that an initial push is given to the rotor anticlockwise direction. Due to the rotation, rotor physically cuts the stator flux and dynamically e.m.f. gets induced in the rotor. This is called speed e.m.f. or rotational e.m.f. The direction of such e.m.f. can be obtained by Flemung's right hand rule and this e.m.f. in phase with the stator flux Φs. The direction of e.m.f. is shown in the Fig. 2. This e.m.f. us denoted as E2N. This e.m.f. circulates current through rotor which is I2N. This current produces its own flux called rotor flux Φr. This axis of Φr is at 90o to the axis of stator flux hence this rotor flux is called cross-field.
Fig.  2

       Due to very high rotor reactance, the rotor current I2N and Φr lags the rotational e.m.f. by almost 90o .
       Thus Φr is in quadrature with Φs in space and lags Φs by 90o in time phase. Such two fluxes produce the rotating magnetic field.
       The direction of this rotating magnetic field will be same as the direction of the initial push given. Thus rotor experiences a torque in the same direction as that of rotating magnetic field i.e. the direction of initial push. So rotor accelerates in the anticlockwise direction under the case considered and attains a subsynchronous speed in the steady state.

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Dividing the two proportionality equations,               E 2r /E 2 = ( N s - N)/N s    but (N s - N)/N = slip s               E 2r /E 2 = s               E 2r = s E 2        The magnitude of the induced e.m.f in the rotor also reduces by slip times the