Skip to main content

Interview Questions On Alternator

Hello Engineers.

Today we are sharing alternator interview questions with answer.

Q. 1. What are the two types of turbo-alternators ?
Ans.  Vertical and horizontal.

Q. 2. How do you compare the two ?
Ans. Vertical type requires less floor space and while step bearing is necessary to carry the weight of the moving element, there is very little friction in the main bearings. The horizontal type requires no step bearing, but occupies more space.

Q. 3. What is step bearing ?
Ans. It consists of two cylindrical cast iron plates which bear upon each other and have a central recess between them. Suitable oil is pumped into this recess under considerable pressure.

Q. 4. What is direct-connected alternator ?
Ans. One in which the alternator and engine are directly connected. In other words, there is no intermediate gearing such as belt, chain etc. between the driving engine and alternator.

Q. 5. What is the difference between direct-connected and direct-coupled units ?
Ans. In the former, alternator and driving engine are directly and permanently connected. In the latter case, engine and alternator are each complete in itself and are connected by some device such as friction clutch, jaw clutch or shaft coupling.

Q. 6. Can a d.c. generator be converted into an alternator ? If yes then how ?
Ans. Yes. A DC generator can be converted into an alternator. By providing two collector rings on one end of the armature and connecting these two rings to two points in the armature winding 180° apart.

Q. 8. Would this arrangement result in a desirable alternator ?
Ans. No

Q. 9. How is a direct-connected exciter arranged in an alternator ?
Ans. The armature of the exciter is mounted on the shaft of the alternator close to the spider hub. In some cases, it is mounted at a distance sufficient to permit a pedestal and bearing to be placed between the exciter and the hub.

Q. 10. Any advantage of a direct-connected exciter ?
Ans. Yes, economy of space.

Searches related to Basic MCQ Interview Questions On Alternator

electrical machines objective questions and answers pdf
electrical machines objective questions pdf download
mcq on alternator with answers
power factor of alternator at no load
objective questions on synchronous machines pdf
open wire test is used for?
synchronous machines questions and answers
synchronous machines objective questions with answers
Q. 11. Any disadvantage ?
Ans. The exciter has to run at the same speed as the alternator which is slower than desirable. Hence, it must be larger for a given output than the gear-driven type, because it can be run at high speed and so made proportionately smaller.

Comments

Popular posts from this blog

Transformer multiple choice questions part 1

Hello Engineer's Q.[1] A transformer transforms (a) frequency (b) voltage (c) current (d) voltage and current Ans : D Q.[2] Which of the following is not a basic element of a transformer ? (a) core (b) primary winding (c) secondary winding (d) mutual flux. Ans : D Q.[3] In an ideal transformer, (a) windings have no resistance (b) core has no losses (c) core has infinite permeability (d) all of the above. Ans : D Q.[4] The main purpose of using core in a transformer is to (a) decrease iron losses (b) prevent eddy current loss (c) eliminate magnetic hysteresis (d) decrease reluctance of the common magnetic circuit. Ans :D Q.[5] Transformer cores are laminated in order to (a) simplify its construction (b) minimize eddy current loss (c) reduce cost (d) reduce hysteresis loss. Ans : B Q.[6] A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be (a) 1600 (b) 250 (c) 400 (d) 1250 A

Condition for Maximum Power Developed In Synchronous Motor

The value of δ for which the mechanical power developed is maximum can be obtained as, Note : Thus when R a is negligible, θ = 90 o for maximum power developed. The corresponding torque is called pull out torque. 1.1 The Value of Maximum Power Developed        The value of maximum power developed can be obtained by substituting θ = δ in the equation of P m .        When R a is negligible,     θ = 90 o  and cos (θ) = 0 hence, . . .               R a = Z s cosθ   and X s = Z s sinθ        Substituting   cosθ = R a /Z s in equation (6b) we get,         Solving the above quadratic in E b we get,        As E b is completely dependent on excitation, the equation (8) gives the excitation limits for any load for a synchronous motor. If the excitation exceeds this limit, the motor falls out of step. 1.2 Condition for Excitation When Motor Develops ( P m ) R max        Let us find excitation condition for maximum power developed. The excitation

Effect of Slip on Rotor Parameters : Part2

Effect of Slip on Rotor Parameters 2. Effect of Slip on Magnitude of Rotor Induced E.M.F        We have seen that when rotor is standstill, s  = 1, relative speed is maximum and maximum e.m.f. gets induced in the rotor. Let this e.m.f. be,                 E 2 = Rotor induced e.m.f. per phase on standstill condition         As rotor gains speed, the relative speed between rotor and rotating magnetic field decreases and hence induced e.m.f. in rotor also decreases as it is proportional to the relative speed N s - N. Let this e.m.f. be,                E 2r = Rotor induced e.m.f. per phase in running condition  Now        E 2r α N s while E 2r α N s - N        Dividing the two proportionality equations,               E 2r /E 2 = ( N s - N)/N s    but (N s - N)/N = slip s               E 2r /E 2 = s               E 2r = s E 2        The magnitude of the induced e.m.f in the rotor also reduces by slip times the